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Abstract

Rainfall insurance can enable farm households to manage production risk, but demand remains low

at market prices. Area–yield crop insurance, which links payouts to average yield in a geographic zone,

attempts to increase demand by more accurately targeting production shortfalls. However, shifting from

an exogenous weather-based to an endogenous yield-based insurance index introduces concerns of asym-

metric information, which can constrain supply from providers. These features are inversely related: larger

insurance zones prohibit index manipulation, but average yield is less informative about any individual

plot. We quantify this tradeoff for maize in Ghana using a spatial yield model calibrated to match observed

production. Insurers must be willing to demarcate zones of no more than 5,000 farmers for area–yield

insurance to outperform weather insurance. The framework presented in this paper allows assessment of

market viability for new crop insurance products.
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1 Introduction

Production risk remains a salient barrier to agricultural investment and rural development. Crop insurance

can insulate farm households from risk, but directly insuring individual on-farm yield generates asymmetric

information (Gunnsteinsson, 2020). To prevent market unraveling, insurers often base payouts on exogenous

factors such as low rainfall.

Weather-based insurance has proven to promote investment and prevent decapitalization in subsidized

field trials (see Cole and Xiong, 2017, for a review), yet demand at market prices remains low (e.g. Cole et

al., 2017). One prominent factor diminishing its appeal is the presence of basis risk, whereby insurance fails

to trigger for non-weather-related loss. Mismatch between payouts and production shortfalls is especially

costly to those near subsistence for whom unrecovered premia constitute a substantial burden in times of

loss (Clarke, 2016).

Area–yield insurance, based on average yield across plots in a geographic zone, can raise demand by

more comprehensively encompassing crop loss. Field trials show promise on very small zones (e.g. Casaburi

and Willis, 2018; Stoeffler et al., 2021), but linking payments to an endogenous outcome reintroduces

asymmetric information that can constrain suppliers’ willingness to issue policies. To sustain an area–

yield insurance market, insured zones must be sufficiently large that providers are protected from strategic

coordination by policyholders within the zone.

In this paper, we assess whether area–yield insurance can lower basis risk for policyholders while

still mitigating asymmetric information for providers. Our analysis complements work by Stigler and

Lobell (2024) and Gallenstein and Dougherty (2024) that quantifies the insurance value to policyholders

of switching from exogenous weather-based to endogenous yield- and price-based indices within a fixed

insurance pool. We introduce a framework to weigh such demand-side quality improvements to insurance

design against supply-side concerns of asymmetric information and index manipulation in small insurance

zones.

The underlying insight is that as an index zone grows, and therefore the scope for manipulation shrinks,

basis risk increases. We identify the largest possible area–yield index zone that improves basis risk over

rainfall insurance by calibrating a spatial model using data on maize in Ghana. Results indicate area–
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yield index insurance can only be competitive if insurers are willing to operate zones of no more than

8kt, encompassing roughly 5,000 farmers on average. We encourage this style of viability analysis when

designing crop insurance contracts.

2 Theory

Plot-level productivity can be described relative to an insurance contract by insured and uninsured compo-

nents. Formally, let yield Yit on plot i in year t be

Yit = γi + βTit + ϵit (1)

where γi is average (anticipated) yield, Tit is the index realization that determines payouts, β scales the

index to output, and ϵit is uninsured variation.

Insurance value to policyholders, and therefore market demand, increases with the correspondence

between the index and realized yield. The remaining uninsured variation constitutes basis risk, quantified

as the ratio of uninsured to total production variance:

BR =
Vart ϵit
Vart Yit

(2)

For exposition, let basis quality be one minus this value.

Traditional index insurance defines Tit using exogenous outcomes such as rainfall. Such contracts

avoid information asymmetry because, conditional on climate, weather is a random shock outside farmers’

control. In principle, insurance could be indexed to precise plot-level conditions with the appropriate

measurement technology. However, even this level of specificity leaves substantial uninsured risk from

non-weather-related loss.

Area–yield insurance, which defines Tit as average productivity within a geographic zone, offers an

attractive alternative to lower basis risk by better reflecting plot-level outcomes. At the extreme, perfect

insurance sets Tit = Yit with zero residual variance in ϵit, but is infeasible due to information asymmetry.
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Expanding the index zone to include multiple plots mitigates this concern as individuals have less influence

over the index, but does so at the cost of basis risk as the zone average becomes less informative about each

plot.

In this study, we quantify how the basis quality of area–yield insurance degrades with index zone size.

We then identify how small a zone an insurer must demarcate to improve over weather insurance. We

analyze maize in Ghana, and our methods readily extend to other crops, regions, and indices.

3 Data

The ideal data to estimate (1) would be a plot-level panel. Such granularity is rare over large areas in

developing countries.1 We instead use annual output and area harvested from 2006–2011 reported by the

Ghana Ministry of Food and Agriculture (MOFA) for the country’s then 138 districts.

We isolate unanticipated productivity variation using the Global Agro-Ecological Zones (GAEZ) database

(FAO and IIASA, 2023). The database combines time-invariant soil, terrain, and climate conditions to appor-

tion national production across geographic units. We treat this apportionment as anticipated productivity,

and yearly deviations reported by MOFA as unanticipated shocks. Full details are given in Appendix A.

3.1 Basis Risk

The basis quality of area–yield insurance is the correspondence between plot and index zone productivity

shocks. We quantify this relationship for 9km×9km tracts as delineated in GAEZ data by modeling tract-

level yield as a spatially autoregressive process. Covariance parameters are calibrated to match measured

variation in MOFA data, and we report the precise relationship between local productivity and zone average

implied by the calibrated model. Details are provided in Appendix B.

3.2 Market Size

The scope for market manipulation depends on market size within an insurance zone. We relate production

volume to zone area using the GAEZ’s local apportionment of national harvest. For each index zone size,

1Advances in remote sensing offer future promise, but correspondence with ground truth remains low (e.g. Jin et al., 2017).
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we define volume as the average of this value across all possible zones of that size.

4 Results

Calibration indicates correlation over the range of three GAEZ grid cells. Beyond 27km, common compo-

nents of maize yield shocks are indistinguishable from background noise. We explore the implications for

area–yield insurance in Figure 1.

The lighter curve represents basis risk across all tracts in a fixed zone, reflecting how zones are tradi-

tionally demarcated. Basis risk is lowest at the center and increases toward the edges. The darker curve

illustrates the potential to improve the contract by designating tract-specific zones centered around the

insured tract. Such precision is becoming increasingly accessible as remote sensing enables measurement

at finer spatial resolutions.

Over small areas, basis risk grows faster with size in the fixed-zone contract because it adds more

peripheral tracts where the index performs poorly. The gap is most pronounced in the 0.5–25kt range, and

subsequently narrows as zones grow too large to be informative. By 50kt, corresponding to 80km×80km

zones, the signal value of area–yield is almost completely degraded.

For comparison, the horizontal line represents weather insurance. This benchmark is calibrated from

analyses of national maize production in West Africa (Lobell and Burke, 2008) and plot-level maize produc-

tion in Kenya (Stigler and Lobell, 2024). Both studies report correlation between rainfall and output around

0.33, indicating basis risk of 0.67. Basis quality does not vary with volume because the exogenous index

minimizes asymmetric information at any scale.

Insurers must be willing to create index zones producing 8kt or less—representing 34km×34km or smaller

areas—for area–yield insurance to match the basis risk of weather insurance. This volume corresponds to

roughly 5,000 maize–producing households per insurance zone (from Ghana Statistical Services, 2020).

Allowing tract-specific indices relaxes this constraint to 11.3kt—40km×40km zones containing 7,000 farm

households. Collusion to manipulate an index would be difficult to sustain at these scales, so we conclude

there is scope for area–yield insurance to improve basis quality without unraveling.
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Figure 1: Basis Risk versus Market Size in Area–Yield Insurance
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Notes: Vertical axis measures basis risk defined by (2); horizontal axis denotes average production volume
in kilotonnes (kt). Grey circles and fitted curve represent average basis quality across all tracts in insurance
zone. Black dots and fitted curve represent basis quality in central tract. Horizontal line shows basis risk of
weather insurance.

6



5 Discussion

We introduce a general framework to characterize supply-side constraints in agricultural insurance that

aggregates endogenous outcomes such as area–yield, and precisely calibrate it for Ghanaian maize. Our

analysis addresses the tension between improving basis quality through geographic compactness and

limiting asymmetric information by expanding market size when selecting an insurance zone. Determining

an acceptable level of information asymmetry remains at the discretion of insurance providers.

Area–yield insurance viability depends crucially on spatial correlation because lower variance allows for

larger zones to achieve the same level of risk. We implement a tractable calibration approach using district-

level production, which limits analysis to correlational basis quality measures. Utility-based assessment

(e.g. Conradt et al., 2015) is sensitive to distributional assumptions about the tails of data generating process,

and would be possible with richer spacio-temporal yield data.

This paper analyzes area-yield insurance on 9km×9km tracts, matching the spatial resolution of rainfall

insurance offered by the Ghana Agricultural Insurance Pool. Stigler and Lobell (2024) estimate residual

plot-level yield variation at this scale of around 0.5, indicating smaller index zones would be needed to

compete with more finely targeted weather insurance. On the other hand, existing weather-based products

that aggregate larger regional patterns likely perform far worse (e.g. Awondo, 2019).

Alternate approaches to address basis risk with exogenous indices expand the scope of named hazards to

include, e.g., pests or fire. Our framework readily accommodates comparisons with such contract structures.

We encourage this type of analysis to evaluate supply-side market potential when introducing new forms

of agricultural insurance based on endogenous outcomes.
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Supplementary Appendix for

“The Market Potential for Area–Yield Crop Insurance”

For Online Publication Only

A District-Level Yield Shock Calculation Details

We define district-level yield shocks in a given year to be the deviation of actual yield reported by the Ghana Ministry of

Food and Agriculture (MOFA) from anticipated yield implied by the Global Agro-Ecological Zones (GAEZ) database.

To compute the latter, we rescale the 2010 GAEZ apportionment of national production by aggregate production in

a given year and adjust for changes in area harvested. With a longer panel, anticipated productivity could also be

measured as the within-district mean over time.

For the calculation used in this paper, let Q̃i and Ãi represent tract-level output and area, respectively, reported in

the GAEZ database. These values are imputed in the data for each tract, defined as a 9km×9km grid cell, around the

year 2010 by taking averages of national output and area over the period 2009–2011. National values are apportioned

among tracts according to local soil, terrain, and climate conditions. Importantly, this apportionment uses fixed

tract characteristics without regard to time-varying features such as rainfall or pest damage in the imputation period.

Therefore, we interpret the GAEZ area and output projections to reflect anticipated productivity (γi) independent of

year-specific shocks.

To convert tract-specific anticipated 2010 productivity from GAEZ into district-level anticipated productivity in year

t for comparison to MOFA data, we proceed in four steps. First, we aggregate across tracts in a district to compute the

district-level anticipated yield in 2010.

γ̃d =
Q̃d

Ãd
≡

∑
i∈d Q̃i∑
i∈d Ãi

(A.1)

Second, we compute the change in district-level output we would expect in year t if only area harvested deviated from

the GAEZ estimate, with no difference in district-level productivity.

Q̃dt = γ̃dAdt (A.2)

Third, we calculate the ratio of observed national production in year t to what would be predicted from changes in area
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alone.

Rt =

∑
d Qdt∑
d Q̃dt

(A.3)

Consider this ratio to be a rescaling factor reflecting nation-wide technology or agricultural intensity. Finally, the year-

specific anticipated productivity in a district is calculated as the GAEZ-defined anticipated productivity multiplied by

that year’s national rescaling factor.

γdt = γ̃dRt (A.4)

Differences between this anticipated production derived from fixed geographic characteristics and actual production

reported by MOFA constitute the insurable yield shocks analyzed in this study.

Note that this calculation treats nation-wide productivity fluctuations as uninsurable variation embedded into γi.

We believe this treatment to be sensible for two reasons. First, national fluctuations are likely caused by predictable

factors such as regional climate patterns, technological developments, or macroeconomic conditions that influence

access to farm inputs. It is less likely that movement in aggregate output comes from idiosyncratic shocks to tracts that

are incidentally similar across the entire nation. Second, it would require substantial capital reserves for a domestic

insurer to indemnify a simultaneous negative shock to the entire country. It is far more credible for an insurance

company to diversify geographically within the nation and protect against locally idiosyncratic risk.

B Area–Yield Index Basis Risk Calculation Details

The relationship between individual tract productivity and average yield in an insurance zone depends crucially on

the spatial correlation of productivity shocks. To quantify spatial correlation, we model the data-generating process for

tract-level productivity as a joint normal distribution with correlation across nearby tracts. We then calibrate parameters

to match the observed spatial variation in yield shocks across districts in MOFA data using maximum likelihood. Finally,

we use the calibrated model to calculate the basis quality of insurance zones of arbitrary size.
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Figure B.1: Aggregation of Characteristic Shocks into Tract Productivity

Panel A Panel B

Notes: Panel A depicts balls of size 1, 2, and 3 around the central tract. Panel B numbers tracts in the grid
for reference in equations (B.3)–(B.6).

B.1 Data Generating Process

We model tract-level productivity as a jointly normal process with correlation in nearby tracts that decays with distance.

To operationalize this, let each tract receive a characteristic shock

ωit ∼ (0, σ2) (B.1)

drawn i.i.d across tracts and years. Tract-level yield is a weighted combination of a tract’s own characteristic and that

of its neighbors. Formally, let

Yit = γi + µit

µit =
1

2K − 1

∑
j∈SK(i)

ω jt

(B.2)

where SK(i) represents all tracts in a K-sized ball around tract i. That is, S1(i) contain the tract i itself. S2(i) is tract i and

the eight tracts directly adjacent to it, including those that share a corner. S3(i) adds the 16 tracts that directly encircle

S2(i), and so on. Panel A of Figure B.1 balls of size 1, 2, and 3 around the central tract.

With this construction, tract-level productivity shocks µit have the same variance as the characteristic shocks ωit

because there are (2K − 1)2 tracts in a K-sized ball. However, there is spatial correlation in µit between tracts to the

extent that they consist of overlapping characteristics. As an illustrative example, consider the area depicted by Panel B

of Figure B.1. When K = 2, the productivity shocks on select tracts can be written (suppressing time subscripts for
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simplicity) as

µ7 =
1
3

(ω1 + ω2 + ω3 + ω6 + ω7 + ω8 + ω11 + ω12 + ω13) (B.3)

µ8 =
1
3

(ω2 + ω3 + ω4 + ω7 + ω8 + ω9 + ω12 + ω13 + ω14) (B.4)

µ9 =
1
3

(ω3 + ω4 + ω5 + ω8 + ω9 + ω10 + ω13 + ω14 + ω15) (B.5)

µ19 =
1
3

(ω13 + ω14 + ω15 + ω18 + ω19 + ω20 + ω23 + ω24 + ω25) (B.6)

The variance of each of these terms is σ2. The covariance in productivity on adjacent tracts 7 and 8 is determined by the

shared terms in (B.3) and (B.4)

cov(µ7, µ8) =
1
9

(var(ω2) + var(ω3) + var(ω7) + var(ω8) + var(ω12) + var(ω13)) =
2
3
σ2

For non-adjacent tracts 7 and 9, the covariance in productivity is determined by only three overlapping terms

cov(µ7, µ9) =
1
9

(var(ω3) + var(ω8) + var(ω13)) =
1
3
σ2

and even more distant tracts 7 and 19 share a single overlapping term so cov(µ7, µ19) = 1
9 var(ω13) = 1

9σ
2.

The extent of spatial correlation is captured by K—expanding the ball increases the overlap between adjacent

tracts and introduces correlation between more distant tracts. Note that characteristic shocks ωit have no physical

interpretation. They do not, for example, represent spillovers from nearby rainfall or pests. The use of ωit is merely a

modeling technique to describe correlation in productivity shocks µit that decays with distance in a parsimonious way

for calibration.

B.2 Calibration with Maximum Likelihood

The data-generating process can be summarized by the two parameters (σ,K) that describe the variance and spatial

correlation, respectively, of productivity shocks across tracts. We next calibrate these parameters to match the observed

distribution of district-level yield shocks inferred from MOFA production data.

To map the model to data, define district-level yield to be a weighted average of yield across all GAEZ tracts in the

district, weighted by harvested area in the tract. The productivity shock in the district can then be written as a weighted

average of productivity shocks across tracts (µit) in the district, which can in turn be written as a weighted average of
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Table B.1: Parameter Estimates and Log Likelihoods

K σ log(Likelihood)

1 1.760 -606.7

2 0.821 -508.9

3 0.837 -580.5

4 1.093 -725.0

5 1.354 -807.0

6 1.632 -874.1

7 1.802 -879.9

8 1.932 -868.6

9 2.152 -898.7

10 2.312 -905.1

characteristic shocks (ωit) on tracts in and adjacent to the district. That is,

µdt =
1

Ad

∑
i∈d

Aiµit =
∑

i∈S1−−K(d)

Ciωit (B.7)

for some weights Ci defined by harvested area Ai and (B.2).

Each µdt is the sum of independent, normally distributed variables ωit. Therefore, the vector of district-level yield

shocks µ⃗t = {µ1,t, . . . , µ138,t} in a given year can be written as a multivariate normal random variable with a covariance

matrix defined as a function of parameters (σ,K) by the overlapping ωit components in districts’ yield processes.

To calibrate the model, we search over the parameter space for values that maximize the joint likelihood of producing

the six realizations of µ⃗t observed in the 2006–2011 production data reported by MOFA. Optimization is implemented

using maximum likelihood by fixing K, calculating the value of σ|K that maximizes the likelihood of the observed yield

shocks for a given K, and then searching over the range K ∈ {1, . . . , 50}, spanning the breadth of the country. Likelihoods

are presented for K ∈ {1, . . . 10} in Table B.1. We also allow the weight assigned to ω to decay with distance rather than

be constant within the K-sized ball, but find the maximum likelihood falls with even very slight decay.
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B.3 Computation of Basis Risk

Finally, we use the calibrated data generating process to compute the covariance between the shock to average yield in

an insurance zone and tract-specific shocks within the zone. Each of these values can again be expressed as sums of

characteristic shocks ωit, and therefore follow a joint normal distribution with covariance determined by the degree of

overlap between an individual tract’s productivity components and those of the full insurance zone.

We report two measures of the basis quality for a zone of arbitrary size N × N. First, we report the average basis

risk across all tracts in the zone. This value will be smaller for tracts toward the center of the zone, whose productivity

components overlap with more of the zone, and greater for tracts toward the edge. Basis quality computed in this

manner corresponds to crop insurance with fixed, predefined insurance zones, following how area–yield is commonly

implemented.

Second, we report the basis risk on only the most central tract(s), for which the area–yield index will be most

informative. This measure represents an upper bound to what is achievable with area–yield insurance. Tract-specific

index computation is becoming increasingly feasible with remote sensing technology that removes cost barriers to

making multiple yield measurements.
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